Segunda generación del Mirai, el coche de hidrógeno de Toyota

Se ha desarrollado sobre la plataforma modular GA-L de Toyota, que permite añadir un tercer depósito de hidrógeno, incrementando así un 30 % la autonomía hasta unos 650 km

A. Noguerol

Toyota empezó a trabajar en el desarrollo de un vehículo eléctrico de pila de combustible en 1992 . Y lanzó a nivel global su berlina eléctrica de pila de combustible, el Toyota Mirai, en 2014. Ese logro sin precedentes fue posible gracias a la experiencia líder en el mundo de Toyota en tecnología híbrida eléctrica, que es la base para un amplio abanico de sistemas de propulsión de vehículos electrificados.

El concepto básico de la energía híbrida de Toyota se ha ido adaptando a la producción de vehículos híbridos eléctricos —Hybrid Electric Vehicles (HEV)—, híbridos enchufables —Plug-in Hybrid Electric (PHEV)—, eléctricos de batería —Battery Electric Vehicles (BEV)— y, a partir del Mirai, eléctricos de pila de combustible —Fuel Cell Electric Vehicles (FCEV)—. Cada uno de ellos presenta cualidades que se ajustan a distintos requisitos de movilidad : por ejemplo, los BEV son ideales para recorridos más cortos y principalmente urbanos; los HEV y PHEV están más indicados para todo tipo de trayectos, incluidos viajes de distancias más largas, y los FCEV pueden ser turismos más grandes y pesados, vehículos industriales, de mayor tonelaje, y diferentes soluciones de transporte público.

Ahora ve la luz una nueva generación del Mirai , un vehículo que eleva la tecnología FCEV a nuevas cotas y apela más directamente a las emociones, tanto por su estilo dinámico y contemporáneo como por ofrecer una experiencia más gratificante al volante. Gracias a un sistema de pila de combustible ampliamente rediseñado, a una configuración muy inteligente y a una mayor eficiencia aerodinámica, su autonomía se acerca a los 650 km, sin más emisiones que agua.

Durante el proceso de desarrollo del nuevo Mirai, Toyota apostó por introducir mejoras generalizadas para aumentar su atractivo, desde sus prestaciones a su imagen y tacto de conducción.

Una de las prioridades ha sido mejorar su autonomía con relación al modelo de primera generación e ir más allá de las distancias que se suelen cubrir con vehículos eléctricos de batería . Su mayor potencia y capacidad de almacenamiento de hidrógeno, su eficiencia superior y su mejor rendimiento aerodinámico contribuyen a incrementar la autonomía alrededor del 30 %, hasta unos 650 km, que otorgan al nuevo Mirai la capacidad de cubrir largas distancias.

El diseño estructural también ha mejorado considerablemente con su desarrollo sobre la plataforma modular GA-L de Toyota, que equipan modelos como el Toyota Crown —mercado japonés— o el Lexus LS. Gracias a una disposición más eficiente y equilibrada del nuevo sistema de propulsión, sobre todo por el desplazamiento del grupo de pila de combustible desde la parte inferior de la zona delantera del habitáculo al compartimento motor, el interior de cinco plazas resulta más amplio, con más espacio para las piernas de los pasajeros traseros.

Además, el nuevo Mirai hace gala de unas proporciones más atractivas: la altura total se ha reducido 65 mm, hasta los 1.470 mm, mientras que la distancia entre ejes se ha incrementado 140 mm , hasta los 2.920 mm. Teniendo en cuenta los 85 mm adicionales del voladizo trasero, la longitud total del vehículo alcanza ahora los 4.975 mm.

Por otra parte, el incremento de 75 mm del ancho de vía y el uso de unas llantas más grandes, de 19 y 20 pulgadas, potencian la presencia más baja y dinámica del vehículo, así como a la percepción visual del centro de gravedad más bajo del nuevo Mirai.

Uno de los principales objetivos del nuevo Mirai ha sido el de apelar más directamente a las emociones. La nueva plataforma GA-L y los avances de Toyota en las tecnologías de FCEV lo han hecho posible.

La adopción de la plataforma GA-L ha permitido reubicar la pila de combustible y la transmisión de forma que se aproveche mejor el espacio. El resultado es un habitáculo de cinco plazas más espacioso y un mejor equilibrio del chasis. Y, lo que quizás sea más importante, dispone de espacio para tres depósitos de hidrógeno a alta presión, lo que aumenta la capacidad de almacenamiento y la autonomía en un 30 %.

Los depósitos están colocados en forma de 'T': el más largo recorre longitudinalmente el centro del nuevo Mirai, bajo el suelo, y otros dos más pequeños están dispuestos lateralmente bajo los asientos traseros y el maletero. En total, caben en ellos 5,6 kg de hidrógeno, en comparación con los 4,6 kg de los dos depósitos del Mirai de 2014. Su posición contribuye a rebajar el centro de gravedad y evita tener que sacrificar espacio del maletero.

Por otra parte, la nueva arquitectura permite desplazar la nueva pila de combustible de hidrógeno de su ubicación actual, bajo el suelo, al compartimento frontal, que equivaldría al compartimento del motor, mientras que la batería de alto voltaje, aún más compacta, y el motor eléctrico están situados encima del eje posterior. La disposición del sistema motor se ha optimizado para otorgar al nuevo Mirai una distribución del peso ideal, de 50:50 entre el eje delantero y el trasero.

Los depósitos presentan una estructura multicapa más resistente y una gran eficiencia en términos de peso; de hecho el peso total de los 3 depósitos cargados con hidrógeno es de apenas 100kg.

Nuevo grupo de pila de combustible

El nuevo grupo de pila de combustible y el nuevo convertidor eléctrico de la pila de combustible —Fuel Cell Power Converter (FCPC)— de Toyota han sido desarrollados expresamente para su uso con la plataforma GA-L. Los diseñadores han conseguido reunir todos los elementos en el bastidor, incluidas las bombas hidráulicas, el intercambiador de calor, el sistema de climatización, los compresores de aire y la bomba de recirculación de hidrógeno . Todos los componentes son ahora más pequeños y ligeros, y al mismo tiempo su rendimiento ha mejorado. La propia carcasa del grupo de pila de combustible es también más pequeña gracias al uso de soldadura por fricción batida —Friction Stir Welding (FSW)—, que reduce el espacio entre la pila de combustible y su envoltura.

La pila de combustible emplea un polímero sólido, como en el Mirai actual, pero ahora es más pequeño y tiene menos celdas : 330 en lugar de 370. Sin embargo, alcanza un nuevo récord de densidad energética específica, con 5,4 kW/l, superando los 3,5 kW/l de la primera generación de Mirai. Así, la potencia máxima se ha incrementado desde los 114 kW a los 128 kW . Asimismo, ha mejorado el rendimiento a baja temperatura , y ahora se puede arrancar a temperaturas de hasta -30˚C. Al concentrar las conexiones del sistema dentro de la carcasa, se necesitan menos componentes, lo que también permite ahorrar espacio y peso.

La prioridad otorgada a la innovación y la mejora en todos los componentes ha hecho posible una reducción del 50 % del peso y, sin embargo, se ha logrado un 12 % más de potencia . Entre las nuevas medidas destaca la reubicación del colector, la reducción del tamaño y el peso de las celdas, la optimización de la forma del separador del canal de gas y el uso de materiales innovadores en los electrodos.

La unidad incorpora asimismo el convertidor CC-CC de la pila de combustible —Fuel Cell DC-DC Converter (FDC)— y componentes modulares de alto voltaje, que también pesan un 21 % menos que en el sistema actual. Así, el peso se ha reducido 2,9 kg, hasta los 25,5 kg. La tecnología avanzada también ha ayudado a ahorrar espacio, y de hecho es la primera vez que Toyota utiliza un material semiconductor de carburo de silicio de nueva generación en el módulo de alimentación inteligente —Intelligent Power Model (IPM)—. El resultado es una mayor potencia y un menor consumo de combustible.

En otros componentes del grupo de pila de combustible se ha aplicado el mismo planteamiento de reducción de tamaño y peso. La entrada de aire se ha diseñado para minimizar las pérdidas de presión, y contiene materiales de aislamiento acústico para que el ruido producido no llegue al habitáculo. El escape utiliza un conducto de resina y ha sido diseñado para permitir descargar una gran cantidad de aire y agua. Asimismo, la mayor capacidad del silenciador contribuye a reducir el ruido en el habitáculo. Globalmente, todo el sistema de aire es casi un 30 % más pequeño que en el Mirai actual, y pesa un 34,4 % menos.

El nuevo Mirai cuenta con una batería de ion-litio de alto voltaje, en lugar de la unidad de níquel-metal hidruro del modelo actual. A pesar de ser más pequeña, tiene una mayor densidad energética, por lo que genera una potencia superior y ofrece un mayor respeto al medio ambiente. Con un total de 84 celdas , tiene un voltaje nominal de 310,8 V y una capacidad de 6,5 Ah, frente a los 244,8 V y 4,0 Ah del modelo actual. El peso total ha disminuido de 46,9 a 44,6 kg y la potencia ha aumentado de 25,5 kW x 10 segundos a 31,5 kW x 10 segundos.

Gracias a sus menores dimensiones, la batería se ha podido colocar detrás de los asientos traseros , sin restar espacio al maletero. También se ha diseñado un circuito optimizado de refrigeración por aire, con unas discretas entradas a ambos lados de los asientos traseros.

Comentarios
0
Comparte esta noticia por correo electrónico

*Campos obligatorios

Algunos campos contienen errores

Tu mensaje se ha enviado con éxito

Reporta un error en esta noticia

*Campos obligatorios

Algunos campos contienen errores

Tu mensaje se ha enviado con éxito

Muchas gracias por tu participación